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THE BRAODENING OF SPECTRAL LINES BY AUTOIONIZATION,
RADIATIVE TRANSITIONS, AND COLLISIONS

I. INTRODUCTION

The shape of atomic spectral lines is seldom determined exclusively by

the spontaneous radiative or autoionization processes. In addition to the

Doppler effect, spectral lines can be appreciably broadened as a result of

collisions with the surrounding particles, classical electromagnetic fields,

and radiation fields. Although natural broadening is neglected in most

theories of collision or pressure broadening, it is desirable to have a com-

prehensive theoretical framework in which all broadening mechanisms can be

treated on an equal footing. Such a theory could be applied to calculate the

shapes of satellite lines which are associated with resonance lines of multiply-

charged ions in the x-ray emission spectra of high-temperature plasmas. Since

the satellite lines are prominent features over a wide range of electron den-

sities (10 - 1024 cm- 3), it is desirable to take into account their natural

width due to spontaneous radiative decay and autoionization. Another appli-

cation of a more general theory would be the simultaneous treatment of colli-

sion and radiation broadening.

Most treatments of collision or pressure broadening are based on the

evaluation of the autocorrelation function of the dipole-moment operator. The

modern quantum theory of spectral line broadening by plasmas has been developed

from this point of view by Baranger and independently by Kolb and Griem

Collision broadening by neutral gases has been treated by Fano 5 using a varia-

tion of the autocorrelation-function approach which is directly applicable to

other broadening mechanisms. The key quantity in Fano's treatment is the

6frequency-dependent relaxation operator introduced by Zwanzig . This operator

obeys a Lippman-Schwinger type equation which is defined in the Liouville-space

r Manuscript submitted September 2, 1980.
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representation, in which density matrices are described by vectors. In the

present investigation, we derive the general form of the overlapping line-shape

formula1-4 by evaluating the Liouville-space expression for the spontaneous

electric-dipole emission rate between states of the complete quantum mechanical

system, which consists of the atomic system, the surrounding particles, and the

radiation field. The key quantity in this treatment is the Liouville-space

scattering operator, employed in the investigations of Ben-Reuven and

co-workers8-0 , which is defined in terms of the Zwanzig relaxation operator.

The determination of the spectral line shape is reduced to the problem of

evaluating the matrix elements of the relaxation operator, whose real and

imaginary parts correspond to the line shifts and widths, respectively. In

this investigation, the explicit expressions for the widths are obtained in the

isolated-line approximation by evaluating the lowest-order nonvanishing contri-

bution to the diagonal matrix elements of the relaxation operator. We show

that the total width is the sum of the rates for all inelastic transitions from

the initial and final atomic states comprising the spectral line and a term

involving the square of the difference between the elastic scattering amplitudes.

In a treatment of the isolated line shape problem based on the autocorrelation

11
function, Lambropoulos obtained only the inelastic contributions and did not

allow for autoionization processes.

The remainder of this paper is organized as follows: In section II, we

review the general theory of transition probabilities within the framework of

the density matrix description of atomic states. In section III, the spontaneous

emission rate for electric-dipole radiation is evaluated and shown to have the

same form as the general formula for overlapping lines. In section IV, explicit

expressions are obtained for the widths associated with various broadening

mechanisms in the isolated-line approximation. The variations of these widths

-2-



with the atomic states and with the properties of the surrounding particles and

radiation field are discussed in section V.

II. DENSITY MATRIX DESCRIPTION

A very general theory of transition probabilities can be developed within

.7the framework of the density matrix description of states in quantum mechanics

In order to describe radiative transitions of an atomic system which is inter-

acting with the surrounding particles through collisions, it is necessary to

first consider the total Hamiltonian

H = Hs + HP + HR + VSP + VSR +vPR (1)

SPwhere H is the Hamiltonian for the isolated atomic system, H is the

Hamiltonian for the perturbing particles, and HR is the Hamiltonian for the

free radiation field. The interaction between the atomic system and the

SPsurrounding particles is represented by V , while the interaction between

SR
the atomic system and the radiation field is denoted by V . The interaction

vPR, which describes radiation processes involving the perturbing particles, is

usually neglected in the theory of spectral line shapes. However, a treatment

of perturber radiation interfering with line radiation has been given by

12
Burgess .

S P R
Eigenstates of H , H , and H will be denoted by Ia>, b, ... , jp),

lq>, ... , and In), Im> ..., respectively. The index p represents the quantum

states of all the surrounding particles, and the index n is understood to

represent a set of photon occupation numbers, one for each mode of the radi-

ation field. The notation can be further compressed by introducing the single

index a to represent a, p, n; and the index B for b, q, m, etc. We shall assume

that the zero-order Hamiltonian eigenvalue problem

H 0 1> W a , (2)

where

0 S (3
H°  H + HP + HR(3)
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can be solved. The solution of (2) ran be most easily obtained if correlations

between the perturbing particles are neglected. In the theory of spectral line

broadening by plasmas13 , ja> and Ib> are often taken to be eigenstates of the

atomic system in the presence of the electric-microfield produced by the plasma

ions, which is usually assumed to be time-dependent on the time scale of the

radiative transition. In order to describe autoionization, part of the electro-

Sstatic interaction between the atomic electrons must be removed from H and

included in equation (6) below.

A general eigenstate of HO can be represented by the density operator

S P RPi = p x p x P (4)

for the initial state. The separable form implies that initially there are no

correlations between the atomic system, the perturbing particles, and the radi-

S P R
ation field. The matrices corresponding to p , p , and p are assumed to be

diagonal in the representations a, p, and n, respectively. For example, the

S
atomic density matrix p can then be expanded in the form

P 1a la<al.(5

In order to describe the transitions between the eigenstates of H° which

are induced by the interaction

v - v SP + VSR +VPR (6)

it is necessary to investigate the time evolution of the density operator

P(t) for the complete interacting system. After introducing the Liouville-

space operator

I f-i (H I* - I H*), (7)

the Schrodinger equation can be written in the form5

-4-



Sdt ab at) - t)Pcd(t) (9)
dc

where

ab, cd (Hac 6bd - 6ac H*bd) (10)

The asterisk denotes complex conjugation. The solution to equation (8) can

be expressed formally by

p (t) = 1 (t,to) P(t o ) (i)

where 1 (t,t) is the Liouville time-evolution operator defined by

In order to define the transition probability, it is necessary to intro-

duce the final state projection operator P The spontaneous emission of a

single photon with wave number k and polarization X can be described by the

final state projection operator

P, Ib>(<b I x I >< (13)b k IB'

where IB is the unit operator in all other degrees of freedom which will be

treated as bath states, to be defined below. The probability per unit time

for the transition i - f can then be expressed by
10

A(i -f) -tlim, d lim Tr P P (t,to P, (t (14)
dt to f 0 0t

-5-



which is the Liouville-space analogute of the definition given by Goldberger

14
and Watson

Equation (14) provides a general description of a collision process in

which the asymptotic states are eigenstates of the Hamiltonian H for the non-

9interacting systems. It has been pointed out that the same description can

be applied to relaxation processes which involve an initial stationary state

(e.g. a state with only diagonal non-zero density matrix elements).

The asymptotic time limits can be taken to obtain the steady-state

transition rate
1 0

Ai -f) f - i Tr I Pf T(+ iO) .i (15)

The Liouville operator Y'(z) is the tetradic-space analogue of the T matrix

occurringin ordinary scattering theory. The Liouville-space analogue of the

Lippman-Schwinger equation can be written in the form

%X(z) = + V(z) V , (16)

where)J(z) is the Green's operator

X w(z) = (z - 1,.)-1  • (17)

The Liouville operator4has been divided according to

I o+V (18)

where Lo andlf are the Liouville operators corresponding to to and V,

respectively. The limit z -i O of the complex variable z in equation (15)

corresponds to reaching the origin from above the real axis. The initial state

density operator Pi and the final state projection operator Pf in equation (15)

must correspond to stationary states of. ° , i.e.

P -  Pf - 0 (19)
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6,9,10

In the density matrix formulation of relaxation processes
9  , the

transition amplitude is expressed in terms of a scattering operator (z),

which is defined on a subspace of states incorporating only the interaction

between the uncorrelated atomic system and the relevant mode k A of the

radiation field. The scattering operator Xr(z) is then explicitly expanded

in a power series of the relevant interactionlyr. The remaining interactions

are introduced as relaxation effects by a self-energy operator. The distinction

between the "free" states of the relevant degrees of freedom and the states in

which they are correlated to the remaining (bath) degrees of freedom can be

formally achieved by using the Liouville-space projection operators 1 and

I - which were introduced by Zwanz g6 . These projection operators

play a role similar to that of the dyadic projection operators introduced in

15the theory of nuclear reactions by Feshbach . Their precise definition will

be given below later.

The relevant part of the interaction can be defined by

r S R,6" (20)
k A

The relevant scattering operator OX r(z) obeys the Lippmann-Schwinger type

equation

"r(z) = _ r + r/PLr(2 ') V, (21)

where

wh r r( ) = _ Z k P' (z). (22)

The self-energy operator 1 K(z) is given by

IR W = 'V+ V L -( z )li (23)

Equations (22) and (23) are analogous to the results obtained for the ordinary

(dyadic) Greens operator by Mower16 . The transition rate can be evaluated

in terms of X r(+ i 0) as follows10 .

-7-



A(i *f) -- i Tr Pf't~( i0) Pi} (24)

The Zwanzig projection operator canbe defined in the double-space notation

1-3
introduced by Baranger as follows:

= B >><< B , (25)

where B denotes the bath degrees of freedom. The effect of'Pon a Liouville

operator is to average it over these degrees of freedom. The double-space

vectors in the subspace spanned by 1 will be denoted by I a b, n mn , where

a b > represents the operator I a > < a I in the space of eigenstates of

HS and I n m > > represents I n > < m I in the space of relevant photon occupation

number states. The initial state density operator Pir  and the final state

projection operator Pf , which are defined on the relevant degrees of freedom,

can be expanded in the form

r
Pi = a I aa, 00>> (26)

a

and

I bb, 11 >> (27)

f b

The single-photon spontaneous emission rate can now be expressed in terms

of the matrix elements of 0 r(+ i 0) as follows:

A (i - f) = - i << Pf Ir (+ iO) I Pi > >

=-i < < b b, 11 IXr (+ i o) Iaa, 0 >> P (28)
a b a

The summations over a and b are to be taken over all bound and continuum states

of the atomic system. In practice, these summations are restricted to include

only a few discrete states.

-8-



III. SPONTANEOUS EMISSION OF ELECTRIC-DIPOLE RADIATION

In this section,we evaluate the spontaneous emission rate for single-

photon electric-dipole radiation. The objective of this evaluation is to

1-5
demonstrate that the formula for overlapping linesI  

, which is usually

obtained by starting with the autocorrelation function of the electric-dipole

moment operator, can be derived from the general equantum mechanical expression

for the transition rate in the Liouville-space representation of density

matrices. Alternative density matrix formulations of the line shape problem

have been given by Cooper1 7  and Davis 18 .  In these formulations the time

dependence of the density matrix is treated directly.

Since the second term in equation (21) gives the only nonvanishing con-

tribution to the scattering oeratorT r(z), the rate for the spontaneous

emission of dipole radiation is given by

A (W) = - ir a b

b, 11 lr ).r (+io) a a, O Oa-- i bb a , 0 I

a b 0a cn dn en fn
d e f

X bb, u1 J U RIcd, nc (

X cd nnd (+iO) ef, n f

X \\e nf 'l'k$ S a a, 0

-9-



where all summations over the relevant degrees of freedom are indicated

explicitly in the second version.

The matrix elements of the Liouville interaction operator V 
R

can be evaluated using the definition which follows from equation (7). The

matrix elements of the dyadic interaction operator V k A are evaluated

using the expansion

S R ap n b- b b () n , .n -1

(30)

+ Vba ( ) + Ib n+ 1

where

eJ

We then obtain the result

ef ne nfI Rk I a a, 0 0-

i{ Vea " ) 6 n 1 a 6n 0 (32)

-6e, a e0 i
We obtain a similar expression for << bb, 11 I f I cd, nc n d > >

except for the presence of terms corresponding to nc or nd - 2. These terms

can be neglected because they do not contribute to the dominant spontaneous

emission process.

The frequency-dependent transition rate Ar (w) given by equation (29) can

now be written as a sum of four terms. These terms may be combined in pairs

by utilizing the Hermitian property

Vab ( - V*(k (33)

-10-



and the Liouville conjugation symmetry relationship9

ab' c d (Z) 
(- a( d4c

which is a consequence of the microscopic reversibility of the time evolution

operator under time reversal.

The frequency-dependent transition rate can now be written in the form

2 k) pa
r 2 ma b c d Vdb bdV ac ac a

(35)

4Im Tr k)I w p V ,k

where the reduced Green's operator & (W) is defined by

d ac (W) < bd, 1 o r(+ i o) acO 1

xx (36)

<< K~d, 1 0 ri 1a) ac,,0 >

The second term, in which the photon occupation numbers are interchanged in the

bra, doesnot give a sharp resonant contribution to the spectral line

shape and will therefore be omitted.

Using the relationship

7 O " (a b, n in "w a- wb + (n-m)tw ab, nmt (37)

and neglecting the relaxation operator R the reduced tetradic Greens operator

generally defined by equation (36) has matrix elements given by

(W) li (W - W + W+ In) - 1 6b (8

ac (w) lim ( -a ba dc (38)b d, ac n 4o

Consequently, the frequency-dependent transition rate in the absence of relaxation

effects simplifies to



27r Vb 2 (_ +2 3r2 a b a-b a a b)  ' (39)

which is the familiar Fermi Golden Rule formula for spontaneous emission from

the levels a to the levels b.

In order to obtain the differential transition rate for the emission of

a photon per unit solid angle and angular frequency intervals, equation (35)

2 3
must be multiplied by the density of final states factor w /(2fc)3. This factor

would have been introduced automatically if the final state projection operator

(27) had been more carefully defined to take into account the continuous distri-

bution of modes of the radiation field. Using the electric-dipole approximation

Vb a( W _ i2 7 6 w b I DA I a) (40)

where D denotes the component of the total atomic dipole-moment operator in the

direction of polarization, the differential photon emission rate for a given

polarization A is obtained in the form

AA (bQ) = W 3 LX (w,Q) . (41)
r 2wic3

The line shape function LA (w,Q), which depends on the angles Q of photoemission,

is given by

L (w, Q Im Tr [DA V(w) p DX] (42)LA (7, I--X

Usually, one is interested only in the total spontaneous emission rate per

unit frequency interval

ArM fdO A 4 3(43)A r =(w 3 c 3

where Im Tr (44)
L() - D(-4

-12-



Equation (44) has the same form as the results derived by Baranger by

4 5Kolb and Griem , and by Fano . Note, however, that equation (44) is more

general than the formula usually employed for overlapping lines in that no

restriction has as yet been imposed on the subspace of the atomic states over

which the trace is to be taken. Consequently, equation (44) provides a

general framework for the description if the entire emission spectrum due to

all bound-bound transitions, including transitions involving autoionizing levels.

IV. The Isolated Line Approximation

If only the diagonal matrix elements &a b , a b (w) of the reduced

Green's operatoTrZ (w) are included in the line shape formula (44), we obtain

L(M) I - Dab a b(45)
IT a b W a + b -~ X(w)I aW-W +b -'ab' ab

ab

where

ab, b () = ab, 0 1 T PR (+io) j ab, 0j . (46)

From the definition of the tetradic relaxation operator (z) given by equation

(23), it follows that

=+(z) = (z*) (47)

where the Hermitian conjugation of ) is defined by

I ( +)~a 8,a a8' ') I = ' L c~(4)

Consequently, the procedure of Goldberger and Watson 14 can be followed to

obtain

-13-



lrn 0 (x + i ) A(x) + i r(x) 12, (49)
n - O -

where A(x) and r(x) are Hermitian operators. Ix(w) can therefore beab,ab

expressed in the form

(W) - A (w) - i ra (w) 12, (50)ab ,ab a b ,a b a b,ab

where A (w) gives the shift associated with the line a - b andab, ab

r (w) corresponds to the full-width at half maximum.a b ,a b

It is clear that equation (45) corresponds to an incoberent superposition

of the Lorentzian profiles associated with each atomic line a- b. The isolated

line approximation is expected to be valid provided that the separations of the

lines are large compared with their widths. In this section, we evaluate the

lowest-order nonvanishing contributions to the widths arising from autoionization,

spontaneous and induced radiative transitions, and collisions.

The width and shift operators r (x) and A(x) can be expressed in terms of

the relaxation operator W (x + i n) by following the procedure used by

14Goldberger and Watson . From the definition (23) and the identity

z - (z_ (51)

16which is analogous to the dyadic relationship used by Mower , we obtain the

results

r(x) - 2 lim r (x +i n)Q d (x- Q7 0 o)Q. (x+i n)] (52)
n -*o I

and

r (N) Me I r( xf)dx'1(3x= -- '(53)

2w f x, - x

where P denotes the Cauchy principal value. Similar results have also been
11

derived by Lambropoulos

-14-



The lowest-order nonvanishing contribution to the width operator r(x),

which is obtained from the approximation of 'k (z) by V/ ,is

r(z) = 2 7r IfjCL 6(x -Q O Q) Q 1S' (54)

Using the compressed notation introduced in section II for the eigenstates of

0,the general matrix elements of r(x) can be expressed in the form

a i r(x) I >,a t e p re6(x- se. + forl

x < , aIVI -IV* I aI a' <% lcxl a'I V I* -I V* a, a

2- V '"V " ' 6(x- W + W
62 OL axc ax ax 8a

(55)

+' 2 ~ 1 7r 1: 6, 6(x-W + We41 2 al

2 Va c' V 8 , (x -W + W)
2 a

- v , v 8 , 6 (X- +w'),

where we have made the approximation . = 1, discussed by Ben-Reuven 
19

To obtain the line width, we must evaluate the expression

Sra b, ab M " K ab, 0 1 1 Ir (+ i o b 0 (56)

-15-



It is now necessary to introduce the bath degrees of freedom n and p, where n

represents the set of all photon occupation numbers and p is the quantum state

of the perturbing particles. The frequency-dependent width can then be expressed

in the form

a ab ,a b n no p

(57)
a b , 0 1 , n 'n ,  p tp n  Po p . (

It is necessary to make the somewhat artificial distinction between the relevant

and bath photon modes in order to obtain the frequency-dependence, which occurs

in the delta functions in equation (55). In subsequent equations, reference to

the relevant photon mode numbers will be omitted whenever it becomes unnecessary.

After substituting equation (55) into equation (57), the lowest-order non-

vanishing contribution to the iso2ated line width can be obtained in the form

r ab, a b (W) - 2 Kanp V a" n"t 2

J aa n n o p p of

x 6(W-W,,+ -W I+W ofp + ) p P
a p p -n n n p

2 <-- n p II 2t
f, b'4b n n"' .1 p of bn

(58)
x 6 (w - awbuw + p -W n + Wn l) Pn P p

2 <a p IVIa p> < p IVI bp>

To p

x 6 (w - 6- + w I + W P

-16-



The first two terms describe all inelastic transitions from the initial and

final states of the radiating atomic system. Note that the states of the radi-

ation field are not involved in the last term, which describes only elastic

collisions. This is a consequence of the assumption that photons are emitted

only by the atomic system and the neglect of correlations between the atomic

system and the perturbers. The radiation emitted by the perturbers can be

described by the use of higher-order perturbation theory.

A. Autoionization

Autojonization results form the electrostatic interaction V between

a discrete state and the continuum states of the atomic system having the same

energy. The definition of the zero-order atomic states can be made in an

unambiguous manner by using the dyadic projection operators introduced by

Feshbac 1 5 or by the alternative procedure introduced by Fano 20 . Autoioni-

zation can be included in the present theory by transferring V Sfrom H to V,

as discussed in Section II. The width arising from the possibility of auto-

ionization from both the initial and final states of the radiating atomic

system is obtained from the inelastic terms in equation (58) and can be

written as

r A (aW) = 27 <a I VSj c> 12 6(w _ wi +ab, a b 412 C a S  12)

(59)

+I b I I c 126(w

where the sum over c ranges over allcontinuum states which are allowed by the

energy and symmetry selection rules. If we now make the approximation

= M a - wb' in which the frequency-dependence is neglected, we obtain the

result

-17-



A 2 7r VI j<a>~ 12 ~

ab, a,b 42 c/w

(60)

S2 cc- )

which is the sum of the autoionization rates from the initial and final atomic

levels. In its most general form, equation (60) gives the autoionization con-

tribution to the line width for a radiative transition between two autoionizing

levels a and b.

It is well-known that the mixing between the discrete and continuum states

produces an asymmetric profile 20 . However, to the best of the authors knowledge,

no theories have been developed which incorporate the effects of radiative

transitions and collisions into the asymmetric line shape function. In the limit

where the line profile parameter q introduced by Fano 20 becomes large, the line

shape function approaches a Lorentzian function, which is generalized in the

present investigation in order to treat all broadening mechanisms on an equal

footing.

B. Radiative Transitions

The width arising from all radiative transitions from the states a

and b which is obtained from the inelastic terms in equation (58) is given by

r(R)ab, a b (w) = I an I v a2
I 2 a"#f a nn <

x 6 (W-Wto + wb - " +  n (61)

1 42 b" # b n" n

x W- Wa+ wb" - n + wn" ) P
x6 (w-w%=-a n ) Pn

-18-



We now introduce the expansion of the interaction V SR in terms of modes X of

the radiation field and replace the summation over k in this expansion by inte-

grations over the frequency uk and the solid angle Q In the electric-dipole

approximation, the total radiative contribution to the width is given by

rab, ab (W) 3 f k dwk dQk

2 7141 c

X a" 2 a h,)2 P( W wa " + k

+ Ina (k, wak) 6 (w - +a, + b - )k)

(62)

+ 4 X (w~' k Q k/ -' +: b + wk )

b" b I ( - wb") (w-wa+ wb, + wk)

+ <X (Wk k)9S 6 (W - Wa + + wk)

+ KnX (wk' k> 6 (W -Wa + b -w k/]

where < nX (wk' Qk)  > denotes the average number of photons per unit frequency,

per unit solid angle, which have polarization X.

The contribution from all spontaneous radiative transitions can be obtained

from the terms which are independent of the average number of photons by per-

forming the integration over 0 k and the sum over X. If we now make the approxi-

mation w - w -wbl we obtain the result
a|
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aba a b 3 c3  a -

(63)4 < 3 b> 2(, 4b,)

+ 3A c 3  b" b ( N 3 b D to 2  ( b)

where

O(x) x >1 (64)
0Ox <iJ1

which is the sum of all spontaneous emission rates out of the states a and b

comprising the spectral line.

The contribution from all induced radiative transitions is conventionally

expressed in terms of the specific intensity I X, ) which is related to the

average number of photons by

n (wA) > - 8 3 Ic (Wl). (65)

If we again make the approximation w - -b, we obtain the result

a b, ab 412 d

(66)

aja I Ka D la > 12 [X(w_ i, A )O(W-Woo ) +I (W W 11ic-
of a., l at aa. ao-oaN )E) a

b+ jb I <b ID Ib'> 12 1 ~bw"jk((bwb) ~bb%) (wb"-wb)]

which gives thecontribution to the width from all stimulated radiative emission

and absorption processes out of the states a and b. Results similar to those
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given by equations (63) and (66) have also been obtained by 
Lambropoulos 1

The starting point in his work is the autocorrelation function.

C. Collisions

The contribution to equation (58) from collisions between the

perturbers and the radiating atomic system is given by

a ,h 2 a"*a p" p

a6 (w-w,"+ +b w p P

x2+ ~~ Fa pVp Pb

42 b"+b p" p p

a + b" - wp +  p (67)

( p - a

+ -- ~ <apISPap>-K~~S P>

x (W + - + Wp) P

We now treat electron collisions in the binary-collision approximation, and set

W M Wa ub' which corresponds to the impact approximation in the theory of

13
spectral line broadening

It is conventional in electron-atom collision theory to introduce the

inelastic scattering cross section
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a (a ~all, 2 it a p VcaI to ( w (68)P , A 2 V e a ap"al pit p

and the elastic scattering amplitude

f a( ) m--j < a Ivc I a '> (69)

where p denotes the wave vector describing the electron scattering by the

atomic system,and Vc is the appropriate collisional interaction. These

quantities can be defined without the use of lowest-order perturbation theory

by replacing Vc by the scattering matrix T.

The isolated-line width produced by electron collisions is then obtained

in the form

rabab = Ne P- ') V a (a-sa", ) + Ve a (b- b", p)
p a" aa

(70)

*Ie f a fb 'P

where N is the electron density and V is the electron velocity. The densitye e

matrix f (p) corresponds to the electron velocity distribution. This result is
1-3

in agreement with the work of Baranger . Note that the total width due to

collisions is the sum of the rates for all inelastic transitions and a term

involving the square of the difference between the elastic scattering amplitudes.

We have shown that the approximation of R(z) by Vimplies that the isolated

line width can be obtained by adding up the partial widths arising from auto-

ionization, spontaneous and induced radiative transitions, and collisions, as

expressed by equations (60), (64), (66), and (70).
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ab, r a +rS + r +r (71)ab,ab ab, ab ab ,ab a b, a b

Although the final results have been worked out explicitly in the approximation

W= a - wb, it should be emphasized that the general theory predicts that each

partial width will have a frequency dependence.

5. RELATIVE IMPORTANCE OF VARIOUS BROADENING MECHANISMS

In order to determine the relative importance of various broadening

mechanisms for a particular spectral line, the expressions obtained for the

isolated line widths in section IV must be evaluated using realistic atomic

wavefunctions. In this section, we discuss approximate evaluations of the

widths which reveal their dependence on the states a and b comprising the line

and on the physical properties of the surrounding particles and radiation field.

The shifts, which are not considered in this investigation, may be important,

particularly in the case of induced transitions.

Even when the atomic lines are assumed to be isolated, the upper and

lower levels a and b usually consist of degenerate magnetic sublevels. The

result of superimposing the contributions from each allowed magnetic component

13,17
can be shown to be the same as the expression obtained from equation (45)

after both IDa b(w and^ a b,a b
(w) are summed over the magnetic sublevels of

b and averaged over the magnetic sublevels of a. The density matrix Pa must

be replaced by the number density of atoms in the state a, regardless of the

I magnetic sublevel quantum numbers. In the remainder of this section, all atomic

states will be specified by giving only the principal and angular momentum quantum

numbers of the active electron.
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A. Autoionization

Consider the autoionizaton process corresponding to the ejection of

an ni-electron accompanied by the deexcitation n aZ - n Z. of one of the
aa c c

remaining bound electrons. Using quantum-defect theory21 , the autoionization

rate for large n can be related to the cross section for the excitation

22nck -> n ata induced by electron impact. In a previous paper , we showed that

the autoionization rate due to the dipole part of the electrostatic interaction

can be approximated by

EH , 2Z2 2(21c + 1)Aa(na X nk 4 ncI c ) = - k,_3\n3 (
a a sc cr 7+ 1 ) 2 ( 2 1 + )

(72)

E a  -E c c cf a a,

where f(n c c - n 9. )is the oscillator strength and g (ec 9' a_1) C M 0 is the

a
threshold value of the partial-wave Gaunt factor for the free-free transition

of an electron in the field of the ion with residual charge Z. In the non-

relativistic approximation employed here, equation (70) is practically inde-

pendent of Z. The n dependence which is predicted is a well-known property.

The 9-dependence is difficult to derive, but experience in evaluating the free-

free Gaunt factor indicates that the autoionization rates decrease rapidly with

increasing 9, typically like k

B. Spontaneous Radiative Transitions

The properties of radiative transition rates are so well-known that

only a brief discussion will be necessary. Using the asymptotic behavior of

the hydrogenic oscillator strengths for large n, the spontaneous radiative decay

rate due to all downward transitions can be estimated by23
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A (n)= 1.6 x 1010 Z4  -1)
r 9/2 sec

n

It should be kept in mind that equation (73) describes only Ant 0

transitions, for which the radiative decay rates increase like Z4 with increasing

-9/ 5Z. The n dependence indicates that the dominant radiative decay mode for a

doubly-excited state with the outer-electron in a high-n level will be the

radiative deexcitation of the inner-electron.

The total spontaneous radiative width is estimated by

rs R 16100 1Z 4 (na-9/2 + -9/2) (74)

with the understanding that na and nb refer to the lowest values for which a

dipole transition can occur.

In medium- and high-Z ions, the Most prominent emission lines have radiative

decay rates which are at least comparable to any autoionization rates. Con-

sequently, equation (74) can be used as an estimate for the total natural

width. It should be emphasized that prominent absorption lines can arise from

transitions to autoionizing levels whose spontaneous radiative decay rates are

relatively small.

C. Induced Radiative Transitions

The result obtained after averaging equation (66) over the magnetic

quantum numbers can be written in the single-particle approximation as
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rIR 4r e  f ( •
ab , ab 3,K2 c

max(Za '£a" n" P, r 2 na> 12

a9 (2Pa + 1) a a

x Ii(a_,Oa,,JhLk) G(,awa,,) + IX(')a,,_ia.k) O(Wd,waJ (75)

+ max (.e b b") < n b i r 2 1 nbb> 2

n bb 4bnbyb (2Pb + 1)

x [X (b-b,', k )  0 (wh-wb,) + 1X (wb,-ObA k ) 0 (wb,-b)]

We note that the electron impact width associated with inelastic transitions

can be obtained in the Bethe approximation from equation (75) simply by

replacing .1 r E"e
cin A f I (w,t) dAl by e2 N J f(V)

2e \

The application of the r2 sum rules given by Bethe and Salpeter24 is

prevented by the photon-frequency dependence of the radiation field intensity

I ( w, ). If we define a total intensity by

I (W) t f dSk IX (WA (76)

and replace I(w) by a suitable frequency-independent average intensity I, the

summations over the complete sets of states n a,,i,, and nb,,b, can be carried

out, and the absorption and stimulated emission contributions can be combined to

give the result
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2 2~
IR - 4(r7e y I) 2+ < 2
ab n ab k Na i a \bkb IrInb/ I ~ 2I ~2'n. nt\ (77)

a2 C

The expectation values of r2 will now be approximated by using the hydrogenic

formula

< 21 n n2 (b 2 + 2
2 r n = -- ( + 1 - 3R (2 + ) a

/ 2Z

(78)

2n
4  2

2 a2 a
z 0

where the last version corresponds to an Z-independent approximation.

Let us consider a thermal equilibrium distribution of radiation character-

ized by a radiation temperature T We assume that this radiation is incident

from one side only, so that the integration over reduces to multiplication
k

by 2 7. We choose the frequency-independent intensity

3(kTR)
R- ffi)(79)

22c2h2

which is about 2/3 the maximum value of the Planck distribution function

corresponding to TR. The estimated width due to induced radiative transitions

is then given by

(80)

S(kTR 3 /n4 n34 )  -I

2.67 x 10 a b sec

In contrast to equation (74) for rS R r I R increases with increasing
ab,ab ' ab, ab

principal quantum number and decreases with increasing residual charge. The

(k TR)3 dependence on the radiation temperature is also an important property.
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Unless the induced radiative transitbns have frequencies within the region of

the maximum in I(w), equation (80) is probably an overestimate of the actual

width.

D. Electron Collisions

It has been pointed out by Griem2 5 that the Bethe approximation for

the electron-impact width due to inelastic transitions can be modified to take

into account some of the effects of elastic scattering. This is done by

beginning the integral over the Maxwellian distribution at zero velocity rather

than starting it at the excitation threshold. The result can be written as

rha - 323/2 aoNe( ) T )a ab, a b 3t/ r ao e

(81)

max(taa / I 2 a 2 3kTe

n'a' a naia (2 a + 1) < n,, r naa g(2IEE

max( b"I,b) nr b", r 2 nb b > 3kTe

Nt A bl' 4 nbb (2 1b + 1) <(21F ,-Ebj

where g now denotes the thermal average of the free-free Gaunt factor.

If the Gaunt factors in equation (81) are now replaced by suitable average

values, the r
2 sum rules can be employed to obtain the result

2 5
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rC 3 2 312 Erab, a b = 3 /Y- 1 ao0 N e  H

/n r2 I kT

<' a a a~ g 2AE (2

<n ~ ~ i bA~ i I) b

where AEa and AEb should be chosen to be the smallest threshold energies. We

now use equation (78) and set the average Gaunt factors equal to unity, which

is a good approximation for An=O transitions in multiply-charged ions. The

electron impact width is then estimated by

rc = 64 3 H__k-_

abab 3/3 e z2

(83)

E H  
n 4+n4

f 2.1 x 10- 7 N ae 2

As expected, the electron impact width has the same n- and Z- dependences

as the width due to induced radiative transitions. The k-dependences would

also be the same if they had been retained in the approximation for the

2expectation values of r . The condition for thermal radiation broadening to be

dominant over electron impact broadening is found from equations (80) and (83)

to be

7.9x 1 Ne (84)
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